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The present paper is a continuation of ref. 4, where the truncated two-point
correlation function for a class of lattice spin systems was proved to have
exponential decay at low temperature, under a weak coupling assumption. In
this paper we compute the asymptotics of the correlation function as the
temperature goes to zero. This paper thus extends ref. 3 in two directions: The
Hamiltonian function is allowed to have several local minima other than a
unique global minimum, and we do not require translation invariance of the
Hamiltonian function. We are in particular able to handle spin systems
on a general lattice.
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1. INTRODUCTION AND RESULTS

1.1. Introduction

Let L be a finite set. The reader should think of L as an element of an
infinite family of sets C={L} ordered by inclusion. Constants (real and
positive) appearing in this paper which neither depend on a particular point
i ¥ L nor on the choice for L ¥ C are called universal.

Given a Hamiltonian function H=HL: RLQ R, we define the asso-
ciated Gibbs measure at inverse temperature b > 0 by

dmbL(x) :=e−2bH(x) d
Lx
Zb

. (1.1)



Here x=(xi)i ¥ L¥ RL :=Ái ¥ L R={x: LQ R}, and dLx is the Lebesgue
measure on RL. The constant Zb=>RL e−2bH(x) dLx is a normalization
constant chosen so that dmbL is a probability measure. We assume the
Hamiltonian H to be a sum of single-spin potentials {fi}i ¥ L and pair-
interactions {wij}i, j ¥ L of the form

H(x)=C
i ¥ L

fi(xi)+a C
i, j ¥ L, i ] j

wij(xi, xj). (1.2)

We stress that the fi’s and wij=wji’s may have an explicit L-dependence.
The coupling constant a is assumed to be small and positive. The fi’s
should have a unique global minimum at xi=0 and the interaction term
should be ferromagnetic at 0. See Hypotheses 1, 2, and 3 below for a
precise formulation.

The object to be studied in this paper is the truncated two-point cor-
relation function given by

ET
b(xi; xj) :=Eb(xixj)−Eb(xi) Eb(xj). (1.3)

Here Eb( · ) denotes expectation value with respect to the Gibbs measure
defined in (1.1), Eb(u) :=>RL u dmbL, for a polynomially bounded observable
u: RLQ R. In ref. 4 we assumed the interactions to decay exponentially
fast. More precisely, we assumed the existence of a (universal) metric r on
L such that wij is bounded by e−r(i, j), in a suitable sense. Under these
assumptions, the following was shown, cf. 4, Theorem 1.1: For any e > 0
there exist universal constants a0 and b0 such that for |a| < a0 and b > b0,
the correlations are bounded by

|ET
b(xi ; xj)| [

1+Ce
2blmin

e−(1− e) r(i, j), (1.4)

where lmin=inf s[Hœ(0)] > 1/C > 0 is the lowest eigenvalue of the
Hessian at x=0, and C is a universal constant.

The purpose of the present paper is to sharpen this result, in particu-
lar, to give upper and lower bounds on the correlations that agree asymp-
totically in the low temperature limit bQ.. To this end, we replace the
metric r, which in ref. 4 was assumed to be given a priori, by rH, which is
essentially determined by the logarithm of the resolvent of the Hessian of
H at x=0, i.e., rH(i, j)=ln{Hœ(0)−1}ii+ln{Hœ(0)−1}jj− ln{Hœ(0)}ij, see
(1.17). That is, all decay properties derived in this paper are to be
compared to the decay of Hœ(0)−1. Under a finite range assumption and
a ferro-magnetic assumption on the interaction, but no assumption
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of translation invariance or any other geometric structure of the lattice,
weimprove in the present paper the estimate (1.4) to the following: There
exist universal constants a0, b0, and C such that for 0 [ a < a0 and b > b0
we have

2[1−y(b)]
b

{Hœ(0)−1}1+y(b)ij [ ET
b(xi ; xj)[

2[1+y(b)]
b

{Hœ(0)−1}1−y(b)ij , (1.5)

where y(b)=Cb−1/2. The precise formulation of this main result is given
in Theorem 1.1 below. The correlation asymptotics have been derived in a
form similar to (1.5) in ref. 3. The assumptions in ref. 3 were, however,
more stringent than those used here (namely, the fi’s were forced to have
only one critical point) and ruled out various important natural examples
for H, like an Ising-ferromagnet in a uniform, non-zero, external magnetic
field. In view of deriving the correlation asymptotics, rather than mere
exponential bounds of type (1.4), the assumption of translation invariance
was crucial in ref. 3, while no such requirement is necessary in the present
paper. In fact, one of the novelties of our approach is based on the obser-
vation, that the assumption of existence of an a-priori metric is obsolete
because the Hessian Hœ(0) of H at x=0 defines a metric rH on L which
yields the correlation length, see Theorem 1.1.

We approach the problem via a representation formula, see Theorem 2.6,
which expresses the truncated two-point correlations functions in terms of
matrix elements of the resolvent of a so-called Witten Laplacian (restricted
to 1-forms). See Section 2. For a more thorough discussion of the Witten
Laplacian techniques used here, and of related works, we refer the reader
to the introduction to our first paper on the subject. (4) In the remaining
part of this subsection we mention some recent works and one application
which was not discussed in our previous paper.

A number of works, starting with a paper by Naddaf and Spencer, (13)

uses semiclassical analysis of the Witten Laplacian on 1-forms to construct
the continuum limit of some massless spin models. Here the lattice spacing
plays the role of a semiclassical parameter. We refer the reader to the
recent paper by Conlon, (6) and references therein, for further material
related to this approach.

In a work (12) of Matte and the second author, the main technical form
bound of ref. 3 is used to show that the usual semiclassical picture, of the
low-lying spectrum of a Schrödinger operator with convex potential,
persists in the thermodynamic limit.

After a ground state transform the Witten Laplacian on 0-forms takes
the form −b−2D+NH·N as an operator on L2(RL; exp(−bH) dLx). In this
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form it appears often in the theory of kinetic equations, and was studied by
Hérau and Nier who obtained bounds on the rate of convergence to equi-
librium for the Fokker–Planck equation. See ref. 10, and references therein.
In this connection no uniformity in L is sought for.

Helffer and Nier have recently obtained in ref. 8 delicate conditions
under which a Poincaré inequality holds for the Gibbs measure (1.1). They
approach the problem by proving the stronger statement that the Witten
Laplacian on 0-forms has compact resolvent. The Poincaré inequalities
thus obtained are not uniform in the cardinality of L.

1.2. Hypotheses on the Hamiltonian

The remaining part of this section is devoted to a presentation of the
main result, Theorem 1.1, below. We begin by formulating the hypotheses
under which we work. We start with the hypothesis on the self-energies fj,
which appear in the Hamiltonian (1.2).

Hypothesis 1. For any j ¥ L, zero is the unique, non-degenerate
minimum of fj ¥ C2(R; R), attained at t=0, i.e., fj(0)=f −j(0)=0,
f'j (0) > 0, and fj(t) > 0, whenever t ] 0. Moreover, there exist universal
constants 0 < cf [ 1 [ Cf and Rf, such that

cf [ f'j (0) [ Cf, (1.6)

-t ] 0: f −j(t)=0S fj(t) \ cf, (1.7)

-t ¥ R: |f'j (t)−f
'

j (0)| [ Cf(|f
−

j(t)|+min{1, |t|}), (1.8)

- |t| \ Rf: |f −j(t)| \ cf max{|f −k(s)| | |s| [ |t|, k ¥ L} (1.9)

for all j ¥ L.

Condition (1.9) implies that the fj’s are monotonely increasing outside
a ball of radius Rf, and that the slope of an fj at a point t (|t| > Rf) domi-
nates the slope, uniformly in L, of all the fi’s inside the ball of radius |t|. For
the formulation of the hypotheses on the interactions wij, where i ] j, it is
convenient to use the following notation for the partial derivatives of wij,

“1wij(xi, xj) :=
“wij

“xi
(xi, xj), “2wij(xi, xj) :=

“wij

“xj
(xi, xj),

“
2
1wij(xi, xj) :=

“
2wij

“x2
i

(xi, xj), “
2
2wij(xi, xj) :=

“
2wij

“x2
j

(xi, xj), and

“
2
12wij(xi, xj) :=

“
2wij

“xi “xj
(xi, xj). (1.10)
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We introduce two symmetric matrices a
¯
=(aij)i, j ¥ L, s¯

=(sij)i, j ¥ L by

aij :=−“212wij(0, 0) and sij :=˛
1, if aij ] 0
0, if aij=0.

(1.11)

Hypothesis 2. There exist universal constants Cs \ 1 and Ca such
that the two symmetric matrices a

¯
=(aij)i, j ¥ L and s

¯
=(sij)i, j ¥ L possess the

following properties:

-i, j ¥ L: aij \ 0, (1.12)

max
i ¥ L

C
j ¥ L

aij [ Ca and max
i ¥ L

C
j ¥ L

sij [ Cs. (1.13)

We remark that (1.12) is a ferromagnetic property. The second bound in
Eq. (1.13) can be viewed as a finite-range condition on the Hessian of H at
x=0. Namely, given i ¥ L, the number of nearest-neighbor sites of i is
; j ¥ L sij. Condition (1.13) requires these to be uniformly bounded in i ¥ L.

The second hypothesis on the interactions wij is formulated with the
aid of the following functions,

hj(s) :=min{|f −j(s)|, |f
−

j(s)|
1
2}+min{1, |s|}, (1.14)

which we introduce for all j ¥ L.

Hypothesis 3. For all i, j ¥ L, the pair interaction functions
wij=wji ¥ C2(R×R; R) vanish on-site and at the origin, i.e., wii(s, t) — 0
andwij(0, 0)=0. Furthermore, for i, j ¥ L, there exists a universal numberCw,
such that

|“1wij(xi, xj)|+|“2wij(xi, xj)|+|“
2
1wij(xi, xj)−“

2
1wij(0, 0)|

+|“22wij(xi, xj)−“
2
2wij(0, 0)|+|“

2
12wij(xi, xj)−“

2
12wij(0, 0)|

[ Cwaij(hi(xi)+hj(xj)), (1.15)

and

|“21wij(0, 0)|+|“
2
2wij(0, 0)| [ Cwaij. (1.16)

All (derived) universal constants appearing in the paper depend only on
ingredients through the universal constants which appear in the relevant
hypotheses, i.e., cf, Cf, Rf, Ca, Cs, and Cw from Hypotheses 1, 2, and 3.
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By ref. 4, Lemma B.1, Hypotheses 1, 2, and 3 insure the well-defined-
ness of the Gibbs measure (1.1), for small a. Moreover, polynomially
bounded, measurable observables u: RLQ C are integrable.

Example. Before stating the main result, we pause to consider a
simple class of examples on the cubic lattice L … Zd, which satisfies
Hypothesis 1, 2, and 3. Let fi(t)=p(t), where p is a polynomial of even
degree (at least 2). In particular p(t)=t4−t2+ht+ch is of this type, where
h ] 0 and ch is chosen such that mint p(t)=0. As for the interaction we
take nearest neighbour interaction on L, i.e., wij=0, if |i− j|1 ] 1.
Hypothesis 3 is fulfilled if wij ¥ C3(R×R; R), wij(0, 0)=0, and |“awij(s, t)|
are uniformly bounded in (s, t) ¥ R2, for |a| ¥ {2, 3}. In addition “212wij(0, 0)
[ 0 is required for Hypothesis 2. In particular wij(s, t)=−st is of this type.

1.3. The Main Result on Correlation Asymptotics

A Neumann series expansion shows that, for a \ 0 small enough, we
have {Hœ(0)−1}ij \ 0, and in particular {Hœ(0)−1}jj > 0 (see first paragraph
in Sec. 3). We may hence define a map rH: L×LQ [0,.] by

exp[−rH(i, j)] :=
{Hœ(0)−1}ij

{Hœ(0)−1}1/2
ii {Hœ(0)−1}1/2

jj

. (1.17)

We are now in a position to formulate the main result of this paper.

Theorem 1.1. Assume Hypotheses 1, 2, and 3. There exist universal
constants C, b0, and a0 > 0 such that, for any 0 [ a [ a0 and any b \ b0,
we have

2 [1−y(b)]
b

{Hœ(0)−1}1+y(b)ij [ ET
b(xi; xj)[

2 [1+y(b)]
b

{Hœ(0)−1}1−y(b)ij , (1.18)

where y(b) :=Cb−1/2. Moreover, rH: L×LQ [0,.] defined by (1.17) is a
metric on L, and

: ln [b2 {Hœ(0)−1}−1/2
ii ET

b(xi; xj){Hœ(0)−1}−1/2
jj ]+rH(i, j)

1+rH(i, j)
: [ y(b). (1.19)

We stress that we do not impose any translation invariance assump-
tion on the Hamiltonian, which was crucial for the method used in refs. 3,
14, and 15.
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Theorem 1.1 reduces the problem of studying the correlation function
at low temperature to that of the study of resolvents of transition matrices.
This can be viewed as a problem related to random walks on infinite
graphs, or more precisely, Ornstein–Zernike theory. We refer the interested
reader to Sjöstrand, (14) Section 5, Campanino, Ioffe, and Velenik (5) (and
references therein), and the monographs by Spitzer (16) (translation invariant
random walks on Zd) and Woess (17) (general theory).

2. A RECOLLECTION OF EARLIER RESULTS

In this Section we recall the ingredients and results from ref. 4 which
are used here. They hold under Hypotheses 1, 2, 3, and a seemingly addi-
tional requirement of existence of an a-priori metric r on L satisfying the
summability condition

max
i

C
j
e−r(i, j) [ Cr and max

i
C
j
er(i, j) aij [ Cr, (2.1)

for a universal constant Cr. For the construction of r from Hypothesis 2,
we introduce the set of nearest-neighbour bonds

Ba :={(i, j) ¥ L×L | aij ] 0}={(i, j) ¥ L×L | sij=1}. (2.2)

Given two points i, j ¥ L, a nonempty, finite collection of nearest-neigh-
bour bonds of the form c={(i0, i1), (i1, i2),..., (in−1, in)} ıBa, with i0=i,
in=j, and ik ] ik+1, is called a path from i to j and is denoted c: iQ j. The
number |c| :=n of bonds b=(ik, ik+1) ¥Ba in the path is referred to as its
length. The collection of all paths from i to j is denoted C(i, j). Note that
(i, i) is not a nearest-neighbour bond (i.e., (i, i) ¨Ba, which follows from
aii=0). Furthermore, neither ” nor {(i, i)} are paths. A metric d is
defined as the canonical metric of the graph (L, Ba). So, given two points
i, j ¥ L, their distance with respect to the metric d is defined to be the
minimal length of all paths linking i and j, i.e.,

d(i, j) :=min{|c| | c ¥ C(i, j)}, (2.3)

d(i, i) :=0, and d(i, j) :=., if no such path exists. If d(i, j)=1 then
(i, j) ¥Ba and i and j are called nearest neighbours. We note that
{Hœ(0)−1}i, j=0, i.e., rH(i, j)=., if and only if i and j are not in the same
connected component of L, with respect to the metric d.

The following lemma states that a sufficiently large multiple of d
satisfies the summability condition required in ref. 4.
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Lemma 2.1. Assume Hypotheses 1, 2, 3, and define a metric
r :=ln(2Cs) d on L. Then

max
i

C
j( ] i)

e−r(i, j) [ 1 and max
i

C
j
er(i, j) aij [ 2CsCa. (2.4)

Proof. To derive the first estimate in (2.4), we remark that, given a
fixed site i ¥ L, the number of sites j ¥ L, which are at distance n=d(i, j)
of i, is bounded by Cn

s , due to Hypothesis 2. Therefore,

C
j( ] i)

e−r(i, j) [ C
.

n=1
Cn

s e
−n ln(2Cs)=1. (2.5)

The second estimate in (2.4) is a trivial consequence of Hypothesis 2 which
implies that d(i, j)=1, whenever aij > 0. L

2.1. Modified Single-Spin Potentials

We first introduce modifications gi’s of the fi’s, which coincide with
the fi’s near 0 and, as the main point, differ from the fi’s by having no
local minima away from 0. They were constructed in ref. 4, Lemma 1.2,
and we present them in the following lemma, leaving out those properties
not needed here. The reader might find Fig. 1 instructive.

Lemma 2.2. Assume Hypothesis 1. There exist universal numbers
qmax > 0 and 0 < R̂0 < R̂1 < Ř0 < Ř1, to which we associate the unions of
intervals

I0 :=[−R̂0, R̂0], Î :=(−R̂1, −R̂0) 2 (R̂0, R̂1),

Ǐ :=(−., −Ř0) 2 (Ř0,.), I. :=(−., −Ř1) 2 (Ř1,.),
(2.6)

and functions

q̂j ¥ C2(Î; [0, qmax]), q̌j ¥ C2(Ǐ ; [0, qmax]),

and qj :=q̂j+q̌j ¥ C2(R, [0, qmax]), (2.7)

possessing the following properties:

(i) On I., we have q̌j — qmax.
(ii) The functions

gj :=fj−qj and ĝj :=fj−q̂j (2.8)

are nonnegative and have a unique critical point at t=0.
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Fig. 1. The solid curve is the graph of fj. The graph of ĝj is the dashed curve on (R̂0, R̂1)
and agrees with fj on (0, R̂0) and on (R̂1,.). The graph of gj is the dashed curve on (R̂0, R̂1),
the dash-dotted curve on (Ř0,.), and agrees with fj on (0, R̂0) and on (R̂1, Ř0). The dash-
dot-dotted curve depicts q̂j, and the dash-dot-dot-dotted curve depicts q̌j

(iii) There exist universal constants cg, Cg > 0 such that, supt |q
−

j(t)|
< Cg, and for all t ¥ R

cg min{1, |t|} [ sgn(t) g −j(t) [ Cg eCg |t|. (2.9)

2.2. Semiclassical Localization Estimates

The second result we invoke in this paper is a semiclassical localization
estimate deriving from ref. 4, Theorem 1.6, which we use to argue that the
twists we introduce into the Witten Laplacian only give rise to small
corrections in the low temperature limit. It holds under Hypotheses 1, 2, 3,
and the existence of a metric d on L satisfying the summability condition
(2.1), which is insured by Lemma 2.1.
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Theorem 2.3. Assume Hypotheses 1, 2, and 3, and let R > 0 be a
fixed universal number. Then there exist universal constants a0, b0, d > 0,
such that, for all k ¥ L, 0 [ a [ a0, and b \ b0, we have

F
|xk| \ R

e−2bH(x) d
Lx
Zb

[ e−b d. (2.10)

We remark that, for a given lattice site k ¥ L, the Hamiltonian func-
tion H̃k(x) :=H(x)−qk(xk) also satisfies Hypotheses 1, 2, and 3, uniformly
in k (i.e., with constants independent of k). Moreover, H(x) — H̃k(x) on
{x ¥ RL : |xk | [ R̂0}. Thus, an application of Theorem 2.3 to the metric d
and the Hamiltonian function H̃k(x) yields the following corollary.

Corollary 2.4. Assume Hypotheses 1, 2, and 3. Then there exist
universal constants a0, b0, d > 0, such that, for all k ¥ L, 0 [ a [ a0, and
b \ b0, we have

:F e−2b[H(x)−qk(x)]
dLx
Zb

−1 : [ e−bd. (2.11)

It is important to notice that Hypotheses 1, 2, and 3 and, hence, also
Corollary 2.4 may fail to hold for the Hamiltonian function H(x)−
2qk(xk). This fact plays a certain role for our choice of the projection p in
Eq. (4.1).

2.3. Twisted de Rham Complex

The following is a brief recollection of the remaining part of ref. 4,
Section 1, and we refer the reader to ref. 4, Section 1 and Appendix B for
details. We use the summation convention ; i( · ) :=; i ¥ L( · ), ; i, j( · ) :=
; (i, j) ¥ L2( · ), ; i ] j( · ) :=; (i, j) ¥ L2

0{(i, i) | i ¥ L}( · ), and ; i( ] j)( · ) :=; i ¥ L0{j}( · ).
Next, we introduce the fermionic Fock space over CL,

F —F(CL) :=Â
.

n=0
F (n), F (n) :=(CL)êa n, (2.12)

where êa n denotes the n-fold antisymmetric tensor product, and
F (0) 4 CW is a one-dimensional subspace spanned by the normalized
vacuum vector W. The standard annihilation and creation operators
{ai, a

g
i }i ¥ L represent the canonical anticommutation relations (CAR);

-i, j ¥ L:

{ai, aj}={ag
i , a

g
j }=0, {ag

i , aj}=dij, and aiW=0, (2.13)
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on F, where {A, B}=AB+BA, and dij is the Kronecker delta. The Hilbert
space of forms over RL is the tensor product

H :=L2(RL) éF=Â
.

n=0
H(n), H (n)=L2(RL) éF (n). (2.14)

We introduce a (multiple of the) standard exterior derivative on H, for
b > 0, and its adjoint

d :=C
i

1
b
“i é ag

i and dg=−C
i

1
b
“i é ai, (2.15)

where “i is shorthand for “

“xi
. Note that d2=(dg)2=0. The Hodge

Laplacian associated to this exterior derivative is ddg+dgd=(d+dg)2.
To an operator T on H (1), we associate its second quantization

dC(T):HQH by the standard formula, i.e., if T is represented by a
matrix (Tij)i, j ¥ L whose entries take their values in operators on L2(RL) then

dC(T) :=C
i, j
Tij é ag

i aj. (2.16)

In the present paper we second-quantize only operators whose entries are
semi-bounded, self-adjoint operators on L2(RL).

We remark that, if 4i, j D(Tij) is a core for all the Tij’s, then the opera-
tors T and dC(T) are essentially self-adjoint and semi-bounded on
{4i, j D(Tij)} é CL and {4i, j D(Tij)} éF respectively. If T is bounded then
dC(T) is also bounded.

In particular, let Q, Q̂, and Q̌ denote the matrix-valued functions with
entries

Q̂ij(x)=dij q̂i(xi), Q̌ij(x)=dij q̌i(xi) (2.17)

and Qij(x)=Q̂ij(x)+Q̌ij(x). (2.18)

Here x — (xi)i ¥ L ¥ RL, and q̂i and q̌i are introduced in (2.7). We frequently
omit the argument and write q̂i :=q̂i(xi) and q̌i :=q̌i(xi), etc. Then their
second quantization is given by

dC(Q#)=C
j
q#
j é ag

j aj, (2.19)

where Q# denotes Q, Q̂, or Q̌, and q#
j denotes qj, q̂j, or q̌j, respectively.

Now, we introduce the twisted exterior derivative

dH, Q :=e−b(H−dC(Q)) deb(H−dC(Q)) (2.20)
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on C.0 (R
L) éF, which is a core for dH, Q. We denote its closure by the

same symbol. Here H —H é 1 is considered a multiplication operator
on H. The twisted Dirac operator is the sum dH, Q+d

g
H, Q of the twisted

exterior derivative and its adjoint. By construction it is clear that
d2

H, Q=(dg
H, Q)

2=0. Thus the square of the twisted Dirac operator is the
associated Hodge Laplacian

DH, Q :=(dH, Q+d
g
H, Q)

2=dH, Q d
g
H, Q+d

g
H, Q dH, Q, (2.21)

which we call the twisted Witten Laplacian. Similarly to the situation in
ref. 4, we have that C.0 (R

L) éF is a formcore for DH, Q.
We write D (n)

H, Q for the restriction of DH, Q to H (n). We recall (ref. 4,
Theorem 1.4)

Theorem 2.5. Assume Hypotheses 1, 2, and 3.

(i) There exist a0, b0 > 0 such that, for 0 [ a < a0 and b > b0,

Ker{D (0)
H, Q}=C e−bH and Ker{D (1)

H, Q}={0}. (2.22)

(ii) If all the fi’s and wij’s are C. in (not necessarily universal)
neighbourhoods of 0, then there exists a universal constant a0 > 0 such that
for 0 [ a < a0 and all b > 0,

Ker{DH, Q}=Ce−bH é W. (2.23)

In ref. 4, the following representation of the correlations has been
derived from Theorem 2.5, which is of key importance to our analysis.

Theorem 2.6. Assume Hypotheses 1, 2, and 3. There exist a0, b0 > 0
such that, for 0 [ a < a0 and b > b0,

ET
b(xi ; xj)=

1
b2Zb

Oe−b(H−qi) é ei | (D
(1)
H, Q)

−1 e−b(H−qj) é ejP. (2.24)

For Q=0, (2.24) has first been observed (implicitly) by Helffer and
Sjöstrand in ref. 9 and, more explicitly, by Sjöstrand in ref. 14. We have
also the following important supersymmetric property.

Theorem 2.7. Assume Hypotheses 1, 2, and 3. There exist universal
constants a0, b0 > 0, such that, for 0 [ a < a0 and b > b0,

s(D (0)
H, Q)0{0} ı s(D

(1)
H, Q). (2.25)
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Proof. The proof of Theorem 2.7 in ref. 14 assumes the discreteness
of the spectrum of DH, Q. Here we refer instead to an abstract result of
Johnsen, cf. ref. 11, Theorem 3.1. We apply this result to H=H (0),
H1=H (1), T=dH, Q |H(0), and F1=Ran T. We verify one of the five equiv-
alent conditions in Johnsen’s theorem, namely condition (iv). It requires
that TTg

|F1 has closed range and does not have 0 in its spectrum. But this
follows directly from the estimate TTg

|F1 \ D
(1)
H, Q | F1 and (2.51) below.

A similar argument is used in ref. 12 (for the case Q=0). L

2.4. Explicit Expressions

We now give more explicit formulas for the objects introduced above.
First, we introduce some exponential weights,

Ĝi :=ebq̂i, Ǧi :=ebq̌i and Gi :=ebqi=Ĝi Ǧi, (2.26)

and twisted derivatives, together with their adjoints,

Zi(H) :=
1
b
“i+H

−

i and Zg
i (H)=−

1
b
“i+H

−

i. (2.27)

We compute, using (2.13) and (2.15)–(2.20),

dH, Q=C
i
GiZi(H) é ag

i and dg
H, Q= C

i
Zg

i (H) Gi é ai. (2.28)

Note the intertwining relations

GiZi(H)=Zi(G) Gi and ĜiZi(H)=Zi(Ĝ) Ĝi, (2.29)

where

G :=H−C
i
qi=C

i
gi+a C

i, j
wij, (2.30)

Ĝ :=H−C
i
q̂i=C

i
ĝi+a C

i, j
wij. (2.31)

The intertwining relations (2.29) were of key importance to our analysis in
ref. 4, as they allowed us to pass from H to a new Hamiltonian function G
which agrees with H at zero, but has yet no critical points other than zero.

Note that H (0)=L2(RL) éF (0) can be identified with L2(RL), and
H (1) with L2(RL) é CL. We will use the same notation, D (0)

H, Q and D (1)
H, Q, for

both representations.
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The fully twisted Witten Laplacian is of the form (cf. (2.13), (2.21),
(2.28), and (2.29))

DH, Q=C
i, j
GiZi(H) Z

g
j (H) Gj é ag

i aj+Z
g
j (H) GjGiZi(H) é aja

g
i

=C
j
{GjZj(H) Z

g
j (H) Gj é ag

j aj+GjZ
g
j (G) Zj(G) Gj é aja

g
j }

+C
i ] j

[GiZi(H), Z
g
j (H) Gj] é ag

i aj,

=C
j
{GjZj(H) Z

g
j (H) Gj é ag

j aj+GjZ
g
j (G) Zj(G) Gj é aja

g
j }

+
2
b
C
i ] j
GiGjH

'

ij(x) é ag
i aj, (2.32)

where we used that [Zi(H), Gj]=0 and [Zi(H), Z
g
j (H)]=2b−1H'

ij, for
i ] j, and we denote H'

ij :=“i“jH. Restricting (2.32) to H (0) and H (1), we
arrive at the twisted Witten Laplacian on 0- and 1-forms,

D (0)
H, Q=C

i
GiZ

g
i (G) Zi(G) Gi, (2.33)

D (1)
H, Q=C

j

3Gj Zj(H) Z
g
j (H) Gj+ C

k( ] j)
GkZ

g
k (G) Zk(G) Gk

4 é Ejj

+
2
b

C
j ] k
Gj Gk H

'

jk é Ejk. (2.34)

Here Ejk denotes the jk th unit matrix, i.e., the matrix with entries
(Ejk)ia=dijdka.

2.5. Comparison Operator and Perturbation

We now recall the definition of the comparison operator which was
shown in ref. 4 to approximate DH, Q at low temperature in a form sense

AH, Q :=C
j
{Ǎj é ag

j aj+Aj é aj a
g
j }+

2
b
C
i, j
H'

ij(0) é ag
i aj, (2.35)

where

Ǎj :=GjZj(H) Z
g
j (H) Gj−2b−1 Ǧ2

j Ĝ
'

jj(x), (2.36)

Aj :=GjZ
g
j (G) Zj(G) Gj. (2.37)
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Furthermore, we define

WH, Q(x) :=Wdiag(x)+Woff-d(x), (2.38)

Wdiag(x) :=
2
b
C
j
(Ǧ2

j Ĝ
'

jj(x)−H
'

jj(0)) é ag
j aj, (2.39)

Woff-d(x) :=
2
b
C
i ] j

(GiGj H
'

ij(x)−H
'

ij(0)) é ag
i aj

=
2 a
b

C
i ] j

(GiGj “
2
12wij(xi, xj)−“

2
12wij(0, 0)) é ag

i aj, (2.40)

and we observe the decomposition identity

DH, Q=AH, Q+WH, Q. (2.41)

The argument ‘‘x’’ in (2.38)–(2.40) indicates that these operators act as
matrix-valued multiplication operators and contain no differential opera-
tor. We frequently omit to display x.

The restrictions of AH, Q,WH, Q,Wdiag, andWoff-d onto H (0) are given by

A (0)
H, Q=C

j
Aj=C

j
GjZ

g
j (G) Zj(G) Gj, (2.42)

W (0)
H, Q=W (0)

diag=W(0)
off-d=0. (2.43)

Before we write down the restrictions of AH, Q, WH, Q, Wdiag, and Woff-d onto
H (1) 4H(0) é CL, we note that we may view any operator on H (1) as a
L×L-matrix with entries in the operators on H(0). More specifically, given
an operator X on H (1), we denote by ({X}ij)i, j ¥ L the unique family of
operators on H(0) such that

X=C
i, j
{X}ij é Eij. (2.44)

Equipped with this notation, we find

A (1)
H, Q =C

j
Ãj é Ejj+

2
b
C
i, j
H'

ij(0) é Eij, (2.45)

Ãj :=Ǎj+ C
k( ] j)

Ak, (2.46)

{W (1)
H, Q}ij = dij{W

(1)
diag}jj+(1−dij) {W

(1)
off-d}ij, (2.47)

{W(1)
diag}jj =

2
b
(Ǧ2

j Ĝ
'

jj(x)−H
'

jj(0)), (2.48)

{W(1)
off-d}ij :=

2
b
(GiGj H

'

ij(x)−H
'

ij(0)). (2.49)
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2.6. Form Bounds on the Perturbation

The main technical result in ref. 4 is Theorem 2.1 which we quote in a
special case (o=0, see ref. 4, Eq. (II.2)).

Theorem 2.8. Assume Hypotheses 1, 2, and 3. There exist universal
constants a0, b0, C > 0 such that, for all 0 [ a [ a0 and all b \ b0, we have

±W (1)
H, Q [

C
b1/2 A

(1)
H, Q, (2.50)

in the sense of quadratic forms.
Note that, as a consequence, for all 0 [ a [ a0 and all b \ b0, we have

D (1)
H, Q \

2(1−b−1
2C) lmin

b
1, (2.51)

where the lowest eigenvalue lmin :=inf s(H'(0)) \ Cf/2 > 0 (see first
paragraph of Sec. 3) of the Hessian of H at x=0 is strictly positive, for
small a.

It turns out that Theorem 2.8 is not precise enough for the derivation
of the correlation asymptotics. What we really need is the following bound
whose proof, sketched below, is based on the constructions in ref. 4.

Theorem 2.9. Assume Hypotheses 1, 2, and 3. There exist universal
constants a0, b0, C > 0 such that, for all 0 [ a [ a0, b > b0, and all i, j ¥ L,
we have

||(Ãi+b−1)−1/2 {W(1)
H, Q}ij (Ãj+b−1)−1/2||L2(RL) [

C
b1/2 (dij+aaij). (2.52)

For the derivation of Theorem 2.9, we use the matrix s
¯
:=(sij)i, j ¥ L,

defined in (1.11), and the functions

Jj[s¯
] :=Ǧ2

j |ĝ
−

j |+ C
k( ] j)

sjk G
2
k |g

−

k |. (2.53)

The result of the estimates in ref. 4, Eqs. (II.14)–(II.27) can be rephrased as
follows,

Lemma 2.10. Assume Hypotheses 1, 2, and 3. There exist universal
constants a0, b0, C > 0 such that, for all 0 [ a [ a0, all b \ b0, and all j ¥ L,
we have

Jj[s¯
] [

C
b1/2 (Ãj+b−1), (2.54)

in the sense of quadratic forms.
Next, we recall the statement of ref. 4, Lemma II.5.
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Lemma 2.11. Assume Hypotheses 1, 2, and 3. For some universal
constant C, we have

|Ǧ2
j (xj) Ĝ

'

jj(x)−H
'

jj(0)| [ CJj[s¯
](x), (2.55)

|G2
j (xj) G

'

jj(x)−H
'

jj(0)| [ CJj[s¯
](x). (2.56)

Proof. In ref. 4, Lemma II.5, the left sides of (2.55) and (2.56) are
bounded by CŒJj[a¯

](x). To bound this quantity by CJj[s¯
](x), we addi-

tionally observe that aij [ Casij, which implies Jj[a¯
](x) [ (1+Ca) Jj[s¯

](x),
for all x ¥ RL. L

Note that Lemma 2.11 implies that

||Jj[s¯
]−1/2 {W (1)

diag}jj Jj[s¯
]−1/2|| [

C
b1/2 , (2.57)

for some universal C <. and all j ¥ L. Next, we considerW (1)
off-d.

Lemma 2.12. Assume Hypotheses 1, 2, and 3. For some universal
constant C and all i, j ¥ L, we have

||Ji[s¯
]−1/2 {W(1)

off-d}ij Jj[s¯
]−1/2|| [

Ca
b1/2 aij. (2.58)

Proof. As in ref. 4, Eq. (II.36), we have

|GiGj “
2
12wij(x)−“

2
12wij(0)| [ Caij(Gi |g

−

i |+Gj |g
−

j |+GiGj |g
−

i |
1/2 |g −j |

1/2),
(2.59)

for all i ] j. Now, we use aij=aijs
1/2
ij =aijsij, sij=sji, and |g −j | [ c−1

g |ĝ −j |
(cf. ref. 4, Eq. (1.30)), which yield

aijGi |g
−

i |=aij |g
−

i |
1/2 (sjiG

2
i |g

−

i |)
1/2 [

aij
c1/2g

Ji[s¯
]1/2 Jj[s¯

]1/2, (2.60)

aijGj |g
−

j |=aij (sijG
2
j |g

−

j |)
1/2 |g −j |

1/2 [
aij
c1/2g

Ji[s¯
]1/2 Jj[s¯

]1/2, (2.61)

and

aijGiGj |g
−

i |
1/2 |g −j |

1/2=aij(sijG
2
j |g

−

j |)
1/2 (sjiG

2
i |g

−

i |)
1/2

[ c−
1
2

g aijJi[s¯
]1/2 Jj[s¯

]1/2. L (2.62)

Proof of Theorem 2.9. The asserted estimate (2.52) follows directly
from combining Eq. (2.57), Lemma 2.12, and Lemma 2.10. L
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3. GREEN’S FUNCTION ESTIMATES

In this section, we study the stability of the Green’s function
(1−aT)−1 under two types of perturbations: TQ egT and TQ T+gY,
where g is a small parameter, Y is a matrix with no definite sign, and T is
the real symmetric L×L transition matrix defined by

Tij :=
−“212wij(0, 0)

`H'

ii(0) H
'

jj(0)
\ 0, (3.1)

for all i, j ¥ L. To justify (3.1), we note that due to Hypothesis 1, 2, and 3,
cf−aCwCa [H'

ii(0) [ Cf+aCwCa for all i ¥ L, and hence 0 < cf/2 [
H'

ii(0) [ 2Cf, provided 0 [ a [ cf/(2CwCa). Since 0 [max
i

C
j( ] i)

|H'

ij(0)| [
aCa, we further have the quadratic form bound

Cf

2
[ Cf−a(Cw+1)Ca [H'(0) [ Cf+a(Cw+1)Ca [ 2Cf , (3.1a)

provided 0 [ a [ Cf/(2(Cw+1)Ca), which implies that

Cf

2
[ lmin :=inf s(H'(0)) [ 2Cf (3.1b)

Observe also that Tii=0, for all i ¥ L. The formula

H'

ij(0)=H'

ii(0)
1/2 {1−aT}ij H

'

jj(0)
1/2 (3.2)

relates the Green’s function (1−aT)−1 to Hœ(0)−1, which defines the
metric rH, cf. (1.17). We denote Ct :=maxi;jTij and observe that
Ct [ 4Ca/Cf, provided 0 [ aCf/(2CwCa).

3.1. Stability under Perturbations of the Form T Q T+gY

Our first goal is the derivation of estimates on the matrix elements of
resolvent of the form

R[aT, g, J] :=(1−aT−g(1−JaT)−1)−1, (3.3)

where 0 [ J < 1. Note that the off-diagonal matrix elements of (1−JaT)−1

decay faster than those of (1−aT)−1. Hence we expect the decay of
R[aT, g, J] to be dominated by the decay of (1−aT)−1. We quantify this
by deriving nontrivial upper and lower bounds on the matrix elements of
R[aT, g, J].

Lemma 3.1. Assume Hypotheses 1, 2, 3, and that 0 [ aCt [ 1/4.
Let 0 [ J < 1, and set o(J) :=6(1−J)−2. Then, for all |g| [ (1−J)2/6,
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(1−o(J) |g|) 311− a

1+2(1−J)−1 |g|
T2

−14
ij

[ R[aT, g, J]ij [ (1+o(J) |g|) 311− a

1−2(1−J)−1 |g|
T2

−14
ij
, (3.4)

for all i, j ¥ L.

Remark. The proof we give yields the lemma with the factor 6
replaced by 20. The reader can check the stated bound by replacing the
estimate 1− |t| [`1+t [ 1+|t|, for |t| [ 1, which is used to derive (3.7), by
the stronger but asymmetric estimate 1− 2

3 |t| [`1+t [ 1+1
2 |t|, for |t| [

3
4.

Proof. For the proof of (3.4), it is convenient to replace aT by a
complex variable and consider the complex rational function f(z) :=
R[z, g, J] given by

f(z) :=
1

1−z−g(1−Jz)−1=
1−Jz
J
1z2−1+J

J
z+

1−g
J
2−1

= 11−Jz
J
2 1 1
z+−z
2 1 1
z− −z
2 , (3.5)

where

z±=
1
2J
51+J±(1−J)`1+4J(1−J)−2 g6. (3.6)

Note that the condition |g| [ (1−J)2/20 insures that z± ¥ R and that

1−4J(1−J)−2 |g| [`1+4J(1−J)−2 g [ 1+4J(1−J)−2 |g|, (3.7)

which together with 4J(1−J) [ 1 implies the following bounds,

1
2J

[
1
J
−
2 |g|
1−J

[ z+ [
1
J
+
2 |g|
1−J

[
3
2J
, (3.8)

1
2
[ 1−

2 |g|
1−J

[ z− [ 1+
2 |g|
1−J

[
3
2
, (3.9)

0 <
1−J
J
11− 4J |g|

(1−J)2
2 [ z+−z− [

1−J
J
11+ 4J |g|

(1−J)2
2 . (3.10)

After some algebra, we arrive at

(z+−z−) f(z)=
1−Jz−
Jz−
11− z

z−
2−1

−
1−Jz+
Jz+
11− z

z+
2−1

. (3.11)
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Note that (3.11) yields an identity for the matrix R[aT, g, J] by substitut-
ing the matrix aT for z on its right side, invoking functional calculus, or
comparing norm-convergent power series. Recall 0 [ z−1

+ aT < z
−1
− aT [ 1

2 1,
cf. (3.10) and (3.8). We now bound the matrix elements of the resolvents
(1−z−1

± aT)
−1. Since z+ > z− we have, by comparing Neumann series,

0 [ {(1−z−1
+ aT)

−1}ij [ {(1−z−1
− aT)

−1}ij. (3.12)

In order to bound matrix elements of f(aT) we use the following two
bounds

1−J
J
11− 4 |g|

(1−J)2
2 [ 1−Jz−

Jz−
[
1−J
J
11+ 4 |g|

(1−J)2
2, (3.13)

−
1−J
J

·
4 |g|

(1−J)2
[
1−Jz+
hz+

[
1−J
J

·
4 |g|

(1−J)2
. (3.14)

The reader may readily derive these two bounds using (3.8) and (3.9)
together with the following simple observation: tQ (1−t)/t is monotoni-
cally decreasing, and for |t| [ 1/2 we have 1−2 |t| [ (1+t)−1 [ 1+2 |t|.

From (3.11)–(3.14) we now deduce that

(z+−z−)−1 1−J
J
11− 8 |g|

(1−J)2
2 {(1−z−1

− aT)
−1}ij

[ R[aT, g, J]ij [ (z+−z−)−1 1−J
J
11+ 8 |g|

(1−J)2
2 {(1−z−1

− aT)
−1}ij,

(3.15)

which, together with (3.10), yields the claim. L

Lemma 3.1 is an important input for the proof of the following
lemma, because it insures the positivity of the matrix elements of
R[aT, g, J].

Lemma 3.2. Assume Hypotheses 1, 2, 3, and that 0 [
aCt [ 1/4. Let 0 [ J < 1, set o(J) :=12(1−J)−3, and assume |g| [
(1−J)3/6. Suppose that Y is a real L×L matrix obeying

-i, j ¥ L: |Yij | [ {(1−JaT)−1}ij. (3.16)

Then 1−aT−gY is invertible, and the matrix elements of its resolvent
fulfill the following estimates.

R[aT, −|g|, J]ij [ {(1−aT−gY)−1}ij [ R[aT, |g|, J]ij, (3.17)

for all i, j ¥ L.
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Proof. First, we expand the inverse of 1−aT−gY in a Neumann
series and use the upper bound on Yij in (3.16) to obtain the upper bound
asserted in (3.17),

{(1−aT−gY)−1}ij=C
.

n=0
{(1−aT)−1 [gY (1−aT)−1]n}ij

[ C
.

n=0
{(1−aT)−1 [|g| (1−JaT)−1 (1−aT)−1]n}ij

=R[aT, |g|, J]ij. (3.18)

The lower bound in (3.17) follows similarly from a Neumann series,

{(1−aT−gY)−1}ij

=C
.

n=0
{R[aT, −|g|, J] [|g| ((1−JaT)−1−Y) R[aT, −|g|, J]]n}ij

\ R[aT, −|g|, J]ij, (3.19)

retaining from the series only the term corresponding to n=0. Here we use
the positivity of the matrix elements of (1−JaT)−1−Y, following from
(3.16), as well as the positivity of the matrix elements of R[aT, −|g|, J],
which follows from Lemma 3.1. L

Putting together Lemma 3.2 and Lemma 3.1, we arrive at the first
main result of this subsection.

Theorem 3.3. Assume Hypotheses 1, 2, 3, and that 0 [ aCt [ 1/4.
Let 0 [ J < 1, set o(J) :=12(1−J)−3, and assume |g| [ (1−J)3/6. Suppose
that Y is a real L×L matrix obeying

|Yij | [ {(1−JaT)−1}ij. (3.20)

Then 1−aT−gY is invertible, and the matrix elements of its resolvent
fulfill the following estimates.

(1−o(J) |g|) 311− a T
1+2(1−J)−1 |g|

2−14
ij

[ {(1−aT−gY)−1}ij [ (1+o(J) |g|) 311− a T
1−2(1−J)−1|g|

2−14
ij
,

(3.21)

for all i, j ¥ L.
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For the derivation of the correlation asymptotics we actually need a
more refined version of the Neumann series expansion in (3.19) which
yields the following estimate.

Theorem 3.4. Assume Hypotheses 1, 2, 3, and that 0 [ aCt [ 1/4.
Let 0 [ J < 1, set o(J) :=12(1−J)−3, and assume |g| [ (1−J)3/12.
Suppose that S and Y are real L×L matrices obeying

|Sij |, |Yij | [ {(1−JaT)−1}ij. (3.22)

Then we have the following estimate,

|{S (1−aT−gY)−1}ij | [ |g|−1 {(1−aT−gY)−1}ij, (3.23)

for all i, j ¥ L.

Proof. Clearly, by replacing Y by −Y, we may assume without loss
of generality that g \ 0. Due to Assumption (3.22), we have that

|Sij | [Xij :={2(1−JaT)−1−Y}ij. (3.24)

Moreover, (1−aT−gY)−1 has nonnegative matrix elements, by Theorem 3.3
and Lemma 3.2. The latter also implies that R[aT, −2g, J]ij \ dij. There-
fore,

|{S (1−aT−gY)−1}ij | [ {X (1−aT−gY)−1}ij

={X(1−aT+2g(1−JaT)−1−gX)−1}ij

=
1
g
3 C

.

n=1
(gX R[aT, −2g, J])n4

ij

[
1
g
3 C
.

n=0
R[aT, −2g, J](gXR[aT, −2g, J])n4

ij

=
1
g
{(1−aT−gY)−1}ij, (3.25)

proving the claim. L

3.2. Stability under Perturbations of the Form T Q egT

In this subsection we study stability of the correlations under scaling
of the transition matrix T defined in (3.1). We begin with a log-convexity
estimate, which is similar to ref. 3, (VI.42).
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Lemma 3.5. Suppose Hypothesis 2 and that aCt [ 1/4. Then there
exists a universal constant g0 > 0 such that, for g1, g2 ¥ [−g0, g0],
0 [ o [ 1, and all i, j ¥ L, we have

{(1−eog1+(1−o) g2 aT)−1}ij [ ({(1−eg1 aT)−1}ij)o ({(1−eg2 aT)−1}ij)1−o.
(3.26)

Proof. Note that all the resolvents can be expanded in norm-con-
vergent Neumann series thanks to the condition aCt [ 1/4. Then we obtain

{(1−eog1+(1−o) g2 aT)−1}ij=C
.

n=0
(eg1n{Tn}ij)o (eg2n {Tn}ij)1−o

[ 1 C
.

n=0
eg1n {Tn}ij 2

o 1 C
.

n=0
eg2n {Tn}ij 2

1−o

,

(3.27)

using Hölder’s inequality. L

We also use the following elementary result

Lemma 3.6. Let f: [0,.)Q R with f(0)=0. If f is convex then

-a, b \ 0: f(a+b) \ f(a)+f(b), (3.28)

and if f is concave then

-a, b \ 0: f(a+b) [ f(a)+f(b). (3.29)

Proof. We consider only the convex case. The concave case follows
from replacing f by −f. We can assume without loss of generality that
0 [ a [ b and that b > 0. Writing

a=
a
b
·b+

b−a
b

·0 and b=
b

a+b
· (a+b)+

a
a+b

·0, (3.30)

the convexity of f implies that

f(a)+f(b) [ 11+a
b
2 f(b) [ 11+a

b
2 b
a+b

f(a+b)=f(a+b). (3.31)

This completes the proof. L

We now turn to the main result of this subsection
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Theorem 3.7. Suppose Hypothesis 2 and aCt [ 1/4. Then there
exist universal constants g0 > 0 and C, such that, for 0 [ g [ g0, we have

{(1−egaT)−1}ij [ (1+Cg) {(1−aT)−1}1−Cg
ij , (3.32)

(1−Cg) {(1−aT)−1}1+Cg
ij [ {(1−e−gaT)−1}ij. (3.33)

Assume additionally that either Tij=0 or Tij \ sT, for some universal con-
stant sT > 0. Then there exists a universal constant g0 > 0, such that, for
0 [ g [ g0:

{(1−aT)−1}1−u(asT) g
ij [ {(1−egaT)−1}ij, (3.34)

{(1−e−gaT)−1}ij [ {(1−aT)−1}1+u(asT) g
ij , (3.35)

where u(asT) :=1/ln[1/(asT)] > 1/2.

Remark. In applications we will use this theorem with eg replaced by
1+g and e−g replaced by 1−g. The corresponding estimates are clearly
equivalent (but with different g0’s). Also notice that asT [ aCt [ 1/4.

Proof. An application of Lemma 3.5 with o :=g/g0, g1 :=g0 (so
that og1=g), and g2=0 yields

{(1−egaT)−1}ij [ ({(1−eg0aT)−1}ij)g/g0 ({(1−aT)−1}ij)1−g/g0

[ (1−eg0aCa)−g/g0 ({(1−aT)−1}ij)1−g/g0, (3.36)

and hence (3.32). Equation (3.36) also implies (3.33) upon the substitution
aQ aŒ :=ega.

To prove (3.35), we note that asT [ a maxi, jTi, j [ aCt [ 1/4. Hence
u(asT)=1/ln[1/(asT)] \ 1/ln[4] > 1/2. We consider b=(i, j) ¥Ba, i.e.,
Tij ] 0. Then, by assumption, aTij \ asT, and we conclude that

e−gaTij [ (aTij)u(asT) g. (3.37)

Next we (repeatedly) use Lemma 3.6 with the function tW t1+u(asT) g, which
is convex and vanishes at 0 and where u(asT) > 0. An expansion of the
resolvent matrix elements in terms of paths thus gives the desired estimate,

{(1−e−gaT)−1}ij

=dij+ C
c ¥ C(i, j)

D
b ¥ c

e−gaTb [ dij+ C
c ¥ C(i, j)

1D
b ¥ c
aTb 2

1+u(asT) g

[ 1dij+ C
c ¥ C(i, j)

D
b ¥ c
aTb 2

1+u(asT) g

=({(1−aT)−1}ij)1+u(asT) g, (3.37a)
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additionally taking into account that i ] j, since Tij ] 0. The remaining
inequality (3.34) is proved analogously, using the concave function
tW t1−u(asT) g. L

3.3. Green’s Functions and Associated Metrics

In this section, we study resolvents (1−aT)−1, where the transition
matrix T is defined in (3.1), and a \ 0 is sufficiently small such that
aCa [ 1/4. Since (1−aT)−1 has positive matrix elements, the expression

exp[−rH(i, j)] :=
{(1−aT)−1}ij

{(1−aT)−1}1/2
ii {(1−aT)−1}1/2

jj

(3.39)

defines a function rH: L×LQ [0,.]. Note that by (3.2), this definition
coincides with (1.17). It is a remarkable fact that rH is actually a metric on L.

Theorem 3.8. Assume Hypotheses 1, 2, 3, and that 0 [ aCa [ 1/4.
Then rH: L×LQ [0,.] is a metric on L.

Proof. For the proof, we denote R :=(1−aT)−1. Its matrix elements
are nonnegative, and R is positive, as a quadratic form. The symmetry
rH(i, j)=rH(j, i) is trivial, since T is symmetric.

Since R is positive, as a quadratic form,

Rij=OR1/2ei | R1/2ejP [ ||R1/2ei || ||R1/2ej ||=RiiRjj, (3.40)

with equality iff R1/2ei and R1/2ej are parallel, which is equivalent to ei and
ej being parallel, i.e., i=j. Therefore, rH \ 0, and rH(i, j)=0 iff i=j.

As for the triangle inequality

rH(i, j) [ rH(i, k)+rH(k, j), (3.41)

which is equivalent to

Rik Rkj [ Rij Rkk, (3.42)

we note that it is sufficient to consider the case where i, j, k ¥ L are three
different points.

Expanding in a Neumann series, we see that Tij \ 0 implies that
Rkk \ {1}kk=1. Moreover, we may expand Rij as a sum over all paths c
from i to j,

Rij=dij+ C
c ¥ C(i, j)

D
b ¥ c

Tb. (3.43)
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We recall that a path c is a (ordered) nonempty, finite collection of nearest-
neighbour bonds of the form c={(i0, i1), (i1, i2),..., (in−1, in)} ıBa, with
i0=i and in=j. The collection of all paths from i to j is denoted C(i, j).
We further introduce the set CŒ(i, j) … C(i, j) of paths from i to j which do
not visit j in between. So, if c={(i0, i1), (i1, i2),..., (in−1, in)} ¥ CŒ(i, j),
then i0=i, in=j, and i1 ] j,..., in−1 ] j.

We define the concatenation p : C(i, j)×C(j, k)Q C(i, k) of two
paths in the obvious way, i.e., c1 p c2 :=(b1,..., bm+n), for c1=(b1,..., bm)
¥ C(i, j) and c2=(bm+1,..., bm+n) ¥ C(j, k). Given two points i, j ¥ L, we
observe the following disjoint decomposition identity,

C(i, j)=CŒ(i, j) 2 (CŒ(i, j) p C(j, j)). (3.44)

Thus, defining a Green’s function RŒ by

R −ij := C
cŒ ¥ CŒ(i, j)

D
bŒ ¥ cŒ

TbŒ, (3.45)

we have the following identity

Rik=dik+R
−

ik+R
−

ik (Rkk−1)=dik+R
−

ik Rkk, (3.46)

for all i, k ¥ L. Now suppose that i, j, k ¥ L are three different points in the
lattice. Then, the concatenation p , viewed as a map p : CŒ(i, k)×
C(k, j)Q C(i, j) is injective. This implies that R −ikRkj [ Rij. Therefore,
using (3.46), we observe that

RikRkj=R −ikRkkRkj [ RijRkk, (3.47)

which proves the triangle inequality (3.42). L

4. SPECTRAL SEPARATION AND IMPROVED DECAY

4.1. The Feshbach Projection Method

Our analysis of the correlation asymptotics is built upon the Feshbach
map associated to the projection

P :=p é 1, where p :=Z−1
b |e−bHPOe−bH| (4.1)

is the rank-1 projection onto e−bH ¥ L2(RL). We write p̄ :=1−p and
P̄ :=1−P=p̄ é 1. The Feshbach operator FP(DH, Q) is defined to be the
image of DH, Q under the Feshbach map, see refs. 1–3, and 7 for a detailed
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description of the Feshbach map and its properties. The Feshbach operator
FP :=FP(DH, Q): Ran PQ Ran P is now defined as

FP=P D (1)
H, Q P−D

g
P̄P (D̄

(1)
H, Q)

−1 DP̄P, (4.2)

where we write D̄ (1)
H, Q :=P̄D (1)

H, QP̄ and use the overlap operator DP̄P: Ran PQ

Ran P̄ defined by

DP̄P :=P̄ D (1)
H, QP. (4.3)

Note that D̄ (1)
H, Q \ 2lmin(1−Cb−1/2) b−11 > 0 (cf. Theorem 2.8) is bounded

invertible on Ran P̄ and that DP̄P is bounded. Hence FP is well-defined.
One of the crucial properties of the Feshbach map is its isospectrality. That
is, FP is invertible on Ran P if and only if D (1)

H, Q is invertible on H(1). In
this case, we have

(D (1)
H, Q)

−1=(P−P̄(D̄ (1)
H, Q)

−1 DP̄P)F
−1
P (P−Dg

P̄P(D̄
(1)
H, Q)

−1 P̄)

+P̄(D̄ (1)
H, Q)

−1 P̄. (4.4)

The rest of this subsection is devoted to properties of the projection P, in
relation to AH, Q. We recall that, for j ¥ L,

Ãj=Ǎj+ C
k( ] j)

Ak, (4.5)

Ǎj=GjZj(H) Z
g
j (H) Gj−

2
b
Ǧ2

j Ĝ
'

jj(x), (4.6)

Aj=GjZ
g
j (G) Zj(G) Gj. (4.7)

On Ran p, we have the following upper bound,

Lemma 4.1. Assume Hypotheses 1, 2, and 3. There exist universal
constants a0, b0, C > 0 such that, for all j ¥ L, 0 [ a < a0, and b > b0, we
have

||pÃjp|| [
C
b3/2. (4.8)

Remark. By virtue of Theorem 2.3, we could have chosen p to be
j-dependent projections onto vectors of the form e−b(H+rj), for a large class
of rj’s. The choice (4.1) seems the most convenient here. We note that the
most desirable choice, rj=−qj, may cause Lemma 4.1 to be false. The
reason is that the expression pǍj p would contain (the square of) a term of
the form e−b(H−2qj), and the Hamiltonian H−2qj does not in general
localize at 0.
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Proof. We first remark that, for j ¥ L, we have

1 C
k( ] j)

Ak
2 e−bH= C

k( ] j)
Gk Z

g
k (G) Zk(G) Gk e−bH=0, (4.9)

due to (2.36), (2.37), and (2.45). Next, a short computation yields

Ǎj=GjZj(H) Z
g
j (H) Gj−

2
b
Ǧ2

j Ĝ
'

jj

=GjZ
g
j (H) Zj(H) Gj+

2
b
(G2

jG
'

jj− Ǧ
2
j Ĝ
'

jj)+
2
b
G2

j q
'

j . (4.10)

By Lemmata 2.10 and 2.11, we have

> 2
b
(G2

jG
'

jj− Ǧ
2
j Ĝ
'

jj)> [
C
b1/2 (Ãj+b−1), (4.11)

in the sense of quadratic forms, for some universal C. Inserting (4.11) into
(4.10) and sandwiching with e−bH, we thus obtain, for b sufficiently large,

Oe−bH | Ãje−bHP [ 2Oe−bH |GjZ
g
j (H) Zj(H) Gje−bHP

+
4
b
||Gj |q

'

j |
1/2 e−bH||2+

CZb
b3/2

=2 ||Gjq
−

j e
−bH||2+

4
b
||Gj |q

'

j |
1/2 e−bH||2+

CZb
b3/2

[ C 1 Zb
b3/2+F

|xj| \ R̂0

e−2b(H−qj) dLx2 , (4.12)

using that ||q −j ||., ||q
'

j ||. [ CŒ are bounded by some universal constant CŒ
and vanish on [−R̂0, R̂0]. According to Theorem 2.4, the integral on the
right side of (4.12) is bounded by Zb e−db, for some universal d > 0. This
yields the asserted estimate. L

On Ran p̄, we have the following complementary lower bound,

Lemma 4.2. Assume Hypotheses 1, 2, and 3. There exist universal
constants a0, b0, C > 0 such that, for all j ¥ L, 0 [ a < a0, and b > b0, we
have

p̄Ãjp̄ \ (1−Cb−1
2)
2lmin

b
p̄. (4.13)
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Proof. We first pick a smooth characteristic function q ¥

C.0 (R
+
0 ; [0, 1]) on the interval [0, R̂0), such that q — 1 on [0, R̂0/2), q — 0

on [R̂0,.), and q̄ :=`1−q2 ¥ C. is smooth, as well. We denote
qj :=q(|xj |). The IMS localization formula reads

Ãj=qjÃjqj+q̄jÃjq̄j−b−2((q −j)
2+(q̄ −j)

2). (4.14)

Note that, by Lemma 2.10,

C
b1/2 (Ãj+b−1) \ Jj[s¯

] \ |ĝ −j |, (4.15)

for some universal constant C <.. Furthermore, Eq. (2.9) yields that
|ĝ −j(xj)| \ cg min{1, |R̂0 |/2}, for |xj | \ |R̂0 |/2. Thus, for some universal
constant c > 0 and b sufficiently large, we have that

q̄jÃjq̄j \
c
b1/2 q̄

2
j . (4.16)

Next, the supersymmetric property (2.7) implies that

D (0)
H, Q \ (1−Cb−1

2)
2lmin

b
p̄, (4.17)

for some universal C. Moreover, qjÃjqj=qj D
(0)
H, Qqj, and hence we have

the lower bound

qjÃjqj \ (1−Cb−1
2)
2lmin

b
(q2

j −qjpqj). (4.18)

Putting together (4.14)–(4.18), we have that

Ãj \ (1−Cb−1
2)
2lmin

b
q2

j+
c
b1/2 q̄

2
j −

2lmin

b
qjpqj−

C
b2

\
2lmin

b
31− CŒ

b1/2 −qjpqj 4, (4.19)

for universal c, C, CŒ > 0, and b sufficiently large. Sandwiching Eq. (4.19)
with p̄, we arrive at

p̄Ãjp̄ \
2lmin

b
31− CŒ

b1/2−||p̄qjpqjp̄||4 p̄. (4.20)
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Now, observe that due to p̄p=pp̄=0,

p̄qjpqjp̄=p̄(1−qj) p(1−qj) p̄. (4.21)

Since 1−qj vanishes on [−R̂0/2, R̂0/2], there exist a universal d > 0 such
that

||p̄qjpqjp̄|| [ ||(1−qj) p(1−qj)||=Z−1
b ||(1−qj) e−bH||2

[ F
|xj| \ R̂0/2

e−2bH d
Lx
Zb

[ e−db, (4.22)

according to Theorem 2.3. We finally obtain the asserted estimate (4.13)
for sufficiently large b by inserting (4.22) into (4.20). L

The following Theorem is an immediate consequence of Lemma 4.2
and Theorem 2.8.

Theorem 4.3. Assume Hypotheses 1, 2, and 3. We have the follow-
ing spectral separation estimates: There exist universal constants a0, b0,
C > 0 such that, for any 0 [ a < a0 and b > b0, we have

P̄A (1)
H, QP̄ \ (1−Cb−1

2)
4lmin

b
P̄, (4.23)

P̄ D (1)
H, QP̄ \ (1−Cb−1

2)
4 lmin

b
P̄. (4.24)

4.2. Improved Decay

We begin by introducing some notation. Let

D :=C
j
Dj é Ejj :=D−1

2
H
1C

j
Ãj é Ejj
2 D−1

2
H , (4.25)

B0 :=D+
2
b
1, (4.26)

B :=D−1
2

H A
(1)
H, QD

−1
2

H

=D+
2
b
(1−aT)=B0−

2a
b
T, (4.27)

V :=D−1
2

H W
(1)
H, QD

−1
2

H , (4.28)
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where DH is the diagonal matrix given by

DH :=C
j
H'

jj(0) é Ejj. (4.29)

We frequently use without further comment that

(cf−aCa) 1 [ DH [ (Cf+aCa) 1 (4.30)

is bounded above and below by universal constants, for small a > 0.
Furthermore, Dj :={D}jj=H'

jj(0)
−1 Ãj, and T is the matrix given by (3.1).

We also introduce Ā (1)
H, Q :=P̄A (1)

H, QP̄, B̄ :=P̄BP̄, B̄0 :=P̄B0P̄, D̄ :=P̄DP̄,
D̄j :=p̄Djp̄, V̄ :=P̄VP̄, and T̄ :=p̄ é T. We observe that

(D̄ (1)
H, Q)

−1=D−1
2

H (B̄+V̄)
−1 D−1

2
H . (4.31)

Furthermore, we observe that, as a consequence of Lemma 4.3, we have

B̄0 \
2
Jb

P̄, where 1 <
1
J
:=1+

Cf

4Cf
[ 1+

lmin

2Cf
[ 2, (4.32)

for a > 0 sufficiently small and b sufficiently large. Note that we used
lmin \ Cf/2, see first paragraph of Sec. 3. We then have the following
decay estimate.

Lemma 4.4. Assume Hypotheses 1, 2, and 3, and define 0 [
J < 1 by (4.32). Then

||{B̄1/2
0 B̄−1B̄1/2

0 }ij || [ {(1−JaT)−1}ij, (4.33)

where || · || is the operator norm on B(H (0)), see (2.44).

Proof. Expanding the inverse of B̄ in a Neumann series, we obtain
from (4.27) that

B̄−1 :=C
.

n=0
B̄−1

0
32a
b
T̄B̄−1

0
4n P̄. (4.34)

Therefore, we have

||{B̄1/2
0 B̄−1B̄1/2

0 }ij || [ C
.

n=0
{Mn}ij, (4.35)

Correlation at Low Temperature: II. Asymptotics 621



where, cf. (4.32),

Mij :=>3 B̄−1/2
0

2a
b
T̄B̄−1/2

0
4
ij

> [ 2a
b
Tij ||B̄

−1
0 || [

2a
b
Tij 1

2
Jb
2−1

=JaTij, (4.36)

which, inserted into (4.35), yields the Neumann series for the inverse of the
matrix 1−JaT. L

Next, we note the following consequence of Theorem 2.9 and
Lemma 4.1.

Lemma 4.5. Assume Hypotheses 1, 2, and 3. There exist universal
constants a0, b0, C > 0 such that, for all 0 [ a [ a0, b \ b0, and all i, j ¥ L,
we have

||{B̄−1/2
0 V̄B̄−1/2

0 }ij || [
C
b1/2 (dij+aTij), (4.37)

||{D−1/2
H B̄−1/2

0 DP̄P}ij p|| [
C
b3/4 (dij+aTij). (4.38)

Proof. We first remark that due to Theorem 2.9, there exist a uni-
versal constant CŒ, such that

||{B̄−1/2
0 V̄B̄−1/2

0 }ij || [Mi
CŒ
b1/2 (dij+aaij) Mj, (4.39)

||{B̄−1/2
0 P̄VP}ij || [Mi

CŒ
b1/2 (dij+aaij) ||(Ãj+b−1)1/2 p||, (4.40)

and

||{B̄−1/2
0 P̄BP}ij ||=dij ||(D̄j+2b−1)−1/2 p̄Ãj p|| [ dijMj ||Ã

1/2
j p||, (4.41)

where

Mj :=||(Ãj+b−1)1/2 p̄(D̄j+2b−1p̄)−1/2||

= ||(D̄j+2b−1p̄)−1/2 (p̄Ãjp̄+b−1p̄)(D̄j+2b−1p̄)−1/2||1/2

[ Cœ, (4.42)
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since Ãj [ (Cœ)2 Dj, for some universal constant Cœ. Finally, we use
Lemma 4.1 and arrive at

||Ã1/2
j p||=||pÃjp||1/2 [

C'−

b3/4 , (4.43)

for some universal constant C'−. Since Tij=H'

ii(0)
−1/2 aijH

'

jj(0)
−1/2 is

bounded from above and below by universal multiples of aij, the lemma
follows. L

We now come to proving the main result of this subsection: the fast
decay of all terms but the main term in FP, defined in (4.2) and (4.3).

Theorem 4.6. Assume Hypotheses 1, 2, and 3, and let JŒ ¥ (J, 1) be
a universal number, where J−1 :=1+Cf/(4Cf) is defined in (4.32). Then
there exist universal constants a0, b0, C > 0 such that, for all 0 [ a [ a0,
b \ b0, and all i, j ¥ L, we have

||p̄{D̄−1
H, Q}ij p̄|| [ Cb{(1−JŒaT)−1}ij, (4.44)

||p̄{D̄−1
H, Q DP̄P}ij p|| [

C
b1/4 {(1−JŒaT)

−1}ij, (4.45)

||p {Dg
P̄PD̄

−1
H, QDP̄P}ij p|| [

C
b3/2 {(1−JŒaT)

−1}ij. (4.46)

Proof. We only derive Estimate (4.46). The derivations of Estima-
tes (4.44) and (4.45) are similar. We first observe that due to (4.31),

{Dg
P̄PD̄

−1
H, QDP̄P}ij=C

k, a
{Dg

P̄PB̄
−1/2
0 D−1

2
H }

ik
(4.47)

×{(B̄−1/2
0 B̄B̄−1/2

0 +B̄−1/2
0 V̄B̄−1/2

0 )−1}ka {D
−1

2
H B̄

−1/2
0 DP̄P}aj.

A Neumann series expansion, (4.33), and (4.37) yield

||p̄ {(B̄−1/2
0 B̄B̄−1/2

0 +B̄−1/2
0 V̄B̄−1/2

0 )−1}ka p̄||

[ 3 C
.

n=0
(1−JaT)−1 5 C

b1/2 (1+aT)(1−JaT)
−16n4

ka
. (4.48)
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Inserting this estimate and (4.38) into (4.47), we hence obtain

||p {Dg
P̄P D̄

−1
H, Q DP̄P}ij p||

[
C
b1/2
3 C
.

n=1

5 C
b1/2 (1+aT)(1−JaT)

−16n C
b1/2 (1+aT)4

ij

[
Cb2

b3/2
3 C
.

n=1

5C
b
(1+aT)(1−JaT)−16n C

b
(1+aT)4

ij
, (4.49)

for any b2 < b, additionally using that all matrices involved have only
nonnegative matrix elements. (At this point we would additionally make
use of the trivial bound ||{D−1/2

H B̄−1/2
0 }ij p̄|| [ Cb1/2dij to derive (4.44)

and (4.45).) We further observe that,

dij [ {(1−JaT)−1}ij, (4.50)

for all i, j ¥ L. Thus, for any matrix M with only nonnegative matrix
elementsMij \ 0, we have that

Mij [ {(1−JaT)−1 M(1−JaT)−1}ij. (4.51)

Applying this to the right side of (4.49), we arrive at

||p{Dg
P̄P D̄

−1
H, Q DP̄P}ij p|| [

Cb2

b3/2
3 C
.

n=0
(1−JaT)−1 5C

b
(1+aT)(1−JaT)−16n4

ij

=
Cb2

b3/2 {((1−Cb
−1) 1−a(J+Cb−1) T)−1}ij

=
Cb2

(1−Cb−1) b3/2
311−a J+Cb

−1

1−Cb−1 T2
−14

ij
. (4.52)

The claim now follows from choosing a sufficiently large, universal number
b such that J+Cb−1 [ (1−Cb−1) JŒ. L

4.3. Proof of the Main Theorem

In this subsection we give a proof of our main result Theorem 1.1.
This proof differs in an essential way from the corresponding proofs given
in ref. 3 and 14, by not relying on translation invariance. We recall that
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translation invariance was used in order to diagonalize, using the Fourier
transform, and then do estimates in momentum space.

We first present the correlation formula (2.24) with the resolvent of
the Witten Laplacian expanded using the Feshbach reduction formula
(4.4). Abbreviating

SP :=P̄(D̄ (1)
H, Q)

−1 DP̄P: Ran PQH (1), (4.53)

fj :=Z−1/2
b e−b(H−qj) é ej, (4.54)

for j ¥ L, we can write

b2
`H'

ii(0) H
'

jj(0) E
T
b(xi ; xj)

=Ofi | D
1
2
HP̄(D̄

(1)
H, Q)

−1 P̄D
1
2
HfjP+Ofi | D

1
2
H(P−SP)F

−1
P (P−Sg

P) D
1
2
H fjP.
(4.55)

Let U: Ran PQ CL be given by

Uk :=||e−bH||−1
H

(0) C
k
Oe−bH é ek | kP ek. (4.56)

Clearly UgU=1Ran P and UUg=1RL. After conjugation with this unitary
map, the Feshbach operator FP becomes a L×L matrix

FP=:
2
b
Ug D

1
2
HFD

1
2
HU, (4.57)

where

F= 1−aT−b−1/2Y, (4.58)

Y :=
b3/2

2
UP(D+V) PUg−

b3/2

2
UPD−1

2
H D

g
P̄P(D̄

(1)
H, Q)

−1 DP̄P D
−1

2
H PU

g. (4.59)

To estimate the matrix elements of Y, we observe that Lemma 4.1 implies

Oei | UPDPUgejP [ Cdij ||pÃjp|| [
CŒ
b3/2 dij, (4.60)
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for some universal constants C and CŒ. Due to Theorem 2.9, we have that

Oei | UPVPUgejP [
Cœ
b1/2 (dij+aTij) ||(Ãi+b−1)

1
2 p|| ||(Ãj+b−1)

1
2 p||

[
C'−

b3/2 (dij+aTij), (4.61)

for some universal constants Cœ and C'−. Estimates (4.60), (4.61), and
(4.46) hence imply that there exist universal constants C and JŒ ¥ (J, 1)
such that

|Yij | [ C{(1−JŒaT)−1}ij. (4.62)

Next, we introduce the L×L matrices e, S, and R̄ by

eij :=dij(Ofj | PfjP1/2−1), (4.63)

Sij :=Ofi | D
1
2
HSP D

1
2
HU

gejP, (4.64)

R̄ij :=Ofi | D
1
2
HP̄(D̄

(1)
H, Q)

−1 P̄D
1
2
HfjP (4.65)

and obtain

b

2
`H'

ii(0) H
'

jj(0) E
T
b(xi; xj)={(1+e−S) F−1(1+eg−Sg)+R̄}ij. (4.66)

We observe that due to Corollary 2.4, there exists a universal d > 0 such
that, for all j ¥ L,

|Ofj | fjP−1| [ e−2 db, (4.67)

|Ofj | PfjP−1| [ e−2 db, (4.68)

Ofj | P̄ fjP [ e−2 db, (4.69)

provided a > 0 is sufficiently small and b is sufficiently large. We recall
from (4.32) that J−1 :=1+Cf/4Cf, and we introduce a universal number
JŒ ¥ (J, 1) by (JŒ)−1 :=1+Cf/8Cf. Now, (4.44) and (4.45) of Theorem 4.6
(recall (4.53)) and (4.69) imply that there exists a universal C, such that for
a > 0 sufficiently small and b sufficiently large we have: For all i, j ¥ L,

|Sij | [
Ce−db

b1/4 {(1−JŒaT)−1}ij, (4.70)

|R̄ij | [ Cbe−2 db{(1−JŒaT)−1}ij. (4.71)
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Moreover, (4.68) directly yields that |eij | [ dije−db. Thus, applying
Theorems 3.3 and 3.4, using (4.62), we have

|{(e−S) F−1+F−1(eg−Sg)+(e−S) F−1(eg−Sg)+R̄}ij | [ e−db{F−1}ij,
(4.72)

for b sufficiently large, which, inserted into (4.66), yields

(1−Ce−db){F−1}ij [
b

2
`H'

ii(0) H
'

jj(0) E
T
b(xi; xj)

[ (1+Ce−db){F−1}ij, (4.73)

for all i, j ¥ L. Now applying again Theorem 3.3, we arrive at

11− CŒ

`b
2311− a

1+CŒb−1/2 T2
−14

ij

[
b

2
`H'

ii(0) H
'

jj(0) E
T
b(xi ; xj)

[ 11+ CŒ

`b
2 311− a

1−CŒb−1/2 T2
−14

ij
, (4.74)

where CŒ is universal. The first assertion (1.18) of Theorem 1.1 then results
from an additional application of the Green’s function estimates (3.32) and
(3.33). The fact that rH is a metric is proved in Theorem 3.8, and, finally,
the second claim (1.19) is a transcription of (1.18). L

ACKNOWLEDGMENTS

The authors thank B. Helffer and O. Matte for discussions,
T. Bodineau for bringing Ornstein–Zernike theory to our attention, and the
referee for careful proof reading. V. Bach gratefully acknowledges support
from the IHP network HPRN-CT-2002-00277 of the European Union, and
J. S. Møller thanks Dokuz Eylül University for hospitality. J. S. Møller
was supported in parts by Carlsbergfondet and by a Marie Curie Individ-
ual Fellowship.

REFERENCES

1. V. Bach, T. Chen, J. Fröhlich, and I. M. Sigal, Smooth Feshbach map and operator-
theoretic renormalization group methods, J. Funct. Anal. 203:44–92 (2003).

Correlation at Low Temperature: II. Asymptotics 627



2. V. Bach, J. Fröhlich, and I. M. Sigal, Renormalization group analysis of spectral
problems in quantum field theory, Adv. in Math. 137:205–298 (1998).

3. V. Bach, T. Jecko, and J. Sjöstrand, Correlation asymptotics of classical lattice spin
systems with nonconvex Hamilton function at low temperature, Ann. Henri Poincaré
1:59–100 (2000).

4. V. Bach and J. Møller, Correlation at low temperature: I. Exponential decay, J. Funct.
Anal. 203:93–149 (2003).

5. M. Campanino, D. Ioffe, and Y. Velenik, Rigorous nonperturbative Ornstein–Zernike
theory for Ising ferromagnets, Europhys. Lett. 62:182–188 (2003).

6. J. G. Conlon, PDE with random coefficients and Euclidean field theory, preprint mp_arc
(2003).

7. J. Derezinski and V. Jaksic, Spectral theory of Pauli–Fierz operators, J. Funct. Anal.
180:243–327 (2001).

8. B. Helffer and F. Nier, Criteria to the Poincaré inequality associated with Dirichlet forms
in Rd, d \ 2, Int. Math. Res. Not. 1199–1223 (2003).

9. B. Helffer and J. Sjöstrand, On the correlations for Kac like models in the convex case,
J. Stat. Phys. 74:349–369 (1994).

10. F. Hérau and F. Nier, Isotropic hypoellipticity and trends to equilibrium for the
Fokker–Planck equation with high degree potential, to appear in Arch. Rational Mech.
Anal. (2003).

11. J. Johnsen, On the spectral properties of Witten-Laplacians, their range projections and
Brascamp–Lieb’s inequality, Integr. Eq. Oper. Theor. 36:288–324 (2000).

12. O. Matte and J. S. Møller, On the spectrum of semiclassical Witten Laplacians and
Schrödinger operators in large dimensions, preprint mp_arc (2003).

13. A. Naddaf and T. Spencer, On homogenization and scaling limit of some gradient per-
turbations of a massless free field, Commun. Math. Phys. 183:55–84 (1997).

14. J. Sjöstrand, Correlation asymptotics and Witten Laplacians, St. Petersburg Math. J.
(AMS) 8:123–147 (1997); Original in Algebra i Analiz 8:160–191 (1996).

15. J. Sjöstrand, Complete asymptotics for correlations of Laplace integrals in the semi-
classical limit,Mém. Soc. Math. Fr. (N.S.) 83, iv+104 pp. (2000).

16. F. Spitzer, Principles of random walk, in Graduate Texts in Mathematics, Vol. 30,
(Springer-Verlag, New York, 1976).

17. W. Woess, Random Walks on Infinite Graphs and Groups, 1st ed., Cambridge Tracts in
Mathematics, Vol. 138 (Cambridge University Press, Cambridge, 2000).

628 Bach and Møller


	1. INTRODUCTION AND RESULTS
	2. A RECOLLECTION OF EARLIER RESULTS
	GREENS FUNCTION ESTIMATES
	SPECTRAL SEPARATION AND IMPROVED DECAY
	ACKNOWLEDGMENTS

